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A practical method for computing solutions to partial differential equations with 
radial symmetry is presented. It consists of the following steps: 1. Consider the problem 
in Cartesian coordinates but store the data only at lattice points of an appropriate 
lower dimensional subspace. 2. Use interpolation and the known symmetries of the 
solution, determine the data at those mesh points of the subspace which are neighbors 
of the points described in step 1. 3. Compute at the lattice points of step 1 using a 
numerical scheme appropriate to Cartesian coordinates. 

To demonstrate the method, an implosion calculation is performed and the results 
compared with other methods. 

I. INTRODUCTION 

Many problems in hydrodynamics have cylindrical or spherical symmetry. When 
the equations of motion are written in the corresponding coordinates the following 
features appear: 

a. There are singular terms proportional to l/r. 

b. The momentum equation is not in conservation.form. 

These features cause difficulties mainly around the origin which are usually over- 
come by some ad hoc device such as extrapolation near the origin, etc. [see Payne 41. 

In this paper we propose a method which is not ad hoc but uses the conservation 
form in the original Cartesian coordinates [l J. We present a numerical example 
to show that the method is not only logically appealing but it also works. It 
consists essentially of the following steps: 

1. Consider the problem in Cartesian coordinates but store the data only 
at lattice points of a lower dimensional subspace-the x axis in problems of 
spherical symmetry and the X-Z plane for problems which are invariant under 
rotation about the z axis. 

* This work was initiated and supported in part by the U. S. Atomic Energy Commission, 
under contract number AT(30-l)-1480 while the author was working at the Courant Institute of 
Mathematical Sciences. 
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2. Use interpolation and the known symmetries of the solution, determine 
the data at those meshpoints of the subspace which are neighbors of the points 
described in step 1. 

3. Compute at the lattice points of step 1 using a numerical scheme appro- 
priate to Cartesian coordinates. 

We shall call our method the Cartesian Method. Its advantage is that there is 
already an extensive theory of numerical computation in Cartesian space [I, 2, 31, 
and, furthermore, the singularity usually introduced at the origin along with rbe 
polar coordinate system is removed. 

An interesting property of the Cartesian method is that flow problems with 
tangential (i.e., non-radial) momentum components can be computed as easily 
as those with only radial momentum. Consider a rotating cylinder, for example. 
Letting HZ(Y, 8) n(r, 19) denote the components of momentum for the point (p., @, 
we have by radial symmetry that 

m(r, 6) = m(r, 0) cos 6 - n(r, 0) sin 0, 

n(r, 8) = m(r, 0) sin 6 + FZ(Y, 0) cos e. 

Later it will be seen that these equations are used for part of step 2 of the Cartesian 
method and that for the problem considered, the tangential momentum component 
n(r, 0) vanishes. 

The Cartesian method will be illustrated by solving the following converging 
shock problem solved previously by Payne [4]: 

Payne’s problem is stated in cylindrical coordinates (Y, 0). The initial conditions 
are: 

P = 1, IJ = 4, 

p = 1, for r<l, p = 4 for r>l, 

m = 0, m = 0. 

Section 2 of this report describes the differential equations used, and Section 3 
describes the difference equations and interpolation and some aspects of the 
organization of the computer program. 

In Section 5, the results obtained using the Cartesian method are compared with 
those obtained by Payne. 

II. DIFFERENTIAL IEQUATIONS 

Following step 1 we consider the problem in Cartesian coordinates even though 
the problem is naturally stated in one fewer dimension in polar coordinates. The 
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differential equations used are the conservation form of the equations of time 
dependent two-dimensional compressible fluid dynamics. 

where 

in which 
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Y is the ratio of specific heats (we are assuming a gamma-law gas) 

The initial conditions are of the form V(x, y, 0) = #x2 + y2). That is, the 
initial flow quantities depend only on the distance from the origin. 

Although the Eqs. (1) used for these examples are those of compressible fluid 
dynamics, other systems of partial differential equations-for example, the equa- 
tions of magnetohydrodynamics-can be put into the same form. Because jumps 
in the flow quantities representing shocks or contact discontinuities, are allowed 
to exist in the flow, the solution sought is the weak solution to (1). That is, see [2] 
a piecewise continuous function U(x, y, t) is sought which is a solution to the 
integral equation JJJ (w* U - w,F - w,G) dx dy dt + JJ w(x, y, 0) +(x2 + y”) dxdy = 0 
for all smooth test vectors w which vanish for j x 1 + t large enough. 

In this approach, the numerical methods lead to shocks and contact discontin- 
uities which are not boundaries but interior regions of rapid variation of the flow 
quantities. While this conservation law approach is not absolutely necessary for 
the systematic computation of symmetric flows using the method presented here, 
its use will allow us to refer to the literature [l-3,5,6] for experience on questions 
of accuracy, stability and consistency. 
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In summary, the equations used are in rectangular coordinates even though 
problems and solutions are assumed to have radial symmetry and thus a “natural” 
mathematical representation in polar coordinates. This is the main idea of the 
numerical method which will be discussed in the next section 

III. DIFFERENCE EQUATIONS AM, COMPUTATIONAL PROCEDURE 

In this section, the difference scheme used for the computed solution of Eq. (1) is 
described although some of the schemes for solving (I), e.g., [l-3, 61, might be 
used with suitable modifications. The overall difference procedure consists of two 
main parts; a standard difference scheme for two space dimensions such as [l-3,5,6] 
and an interpolation. After these two parts are described in detail for the problems 
solved, the consistency and truncation error of the overall difference procedure 
will be discussed. Because no stability proof is given here, it is still necessary to 
be careful not to transform a standard difference scheme which is stable into an 
overall scheme which is not. 

The standard scheme is a variation of the two step L - W described in [S]. 
The first step of the two-step scheme is 

The second step of the scheme is 

in which 

and 
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This is a nine-point scheme because nine points of the mesh in x - y space at 
step y1 are used to obtain numerical values at a point at step II + 1. This scheme 
can be used only for a point at which flow quantities are known for all its eight 
neighbors. In [5] it is shown that this scheme is consistent and has truncation error 
O(dx3) where dx is the mesh spacing. 

0 0 0, 0 0 6 d 
D’ b’ E’ A’ 

0 -FLOW QUANTITIES OBTAINED BY INTERPOLATION AND 
TRIGONOMETRY. 

X -FLOW QUANTITIES OBTAINED BY STANDARD DIFFERENCE 
SCHEME. 

FIG. 1. Geometry of “Cartesian Method.” 

Consider Fig. 1. The horizontal line is the x axis. At points on it, the vertical 
component of momentum ~1, is equal to 0. To obtain the flow quantities at a point 
such as A, an interpolation is performed using the points a, b, c to find the flow 
quantities at d, which is at the intersection of the x axis and the circle with center 
at the origin that goes through the point A. Let 19 be the angle which the ray from 
the origin to A makes with the x axis. Let (pd , rnd , nd , ed) be the flow quantities 
(obtained by interpolation) at the point d. Then, assuming radial symmetry for 
the solution, the corresponding flow quantities at the point A are (p, m cos 0, 
-m sin 0, e). 

Using this same method, the points near the origin at B, C, B’ get flow quantities 
assigned to them which are appropriately related to those at e. Values at the point 
E are obtained in the same way as those at A while those at D and D’ are obtained 
from those at E by symmetry. 

The quantities sin 6’ and the cos 8 are independent of the flow values and thus 
need to be computed only once in the calculation rather than at every step. In fact, 
because the distances from the origin to point d and point b in Fig. 1 need to be 
computed anyway for the interpolation coefficients, the computation of sin 8 and 
cos 0 reduces to a division each. 

At point d, a Langrangean quadratic polynomial interpolation which has error 
0(0x3) is used. Let the distances from the origin to the points a, b, c, d, be denoted 
by r. , rb , rc , f‘d . Then the interpolation formula for obtaining the approximate 
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n 

value f of a function f at d assuming that the values at a, b, c are known is 
given by 

where 

al = (rd - rd(rd - r,)/(2Ax2), 
a2 = (rd - raXrd - ~,)/(-Ax~>, 
a3 = (rd - ra)(rd - rdl(2Ax2), 

and Ax is the spacing between the points a, b, c. 
In [5] it is shown that if quantities are known at step y1 with error O(A3), then the 

application of the %tandard” part of this difference method gives quantities which 
have O(Ax3) error at the y1 + 1st step also. Since the interpolation and symmetry 
part of this scheme doesn’t introduce errors greater than O(A3) compared wit 
those produced by the “standard” scheme, and since the “standard” part of the 
scheme produces errors of order at most O(A3), provided initial data was of order 
$@13), the overall error committed is O(A3). This proves that the truncation error 
is O(A3)* 

Proof of Consistency. 

Define the operators N(U) and N,(U) by the equations 

and 

N(U) = Ut -+Fj, + G,, 

N,(U) = (Ujnk+l - U$)jAt + (Fy& - Fy$J/Ax + (CT;& - G;;fs)/Ay. 1 

N,(U) is the difference operator corresponding to the “standard” part of the 
scheme. Define 

where primes denote quantities after the interpolation and reflection. Now, to 
show consistency, we need to show that / Nn(U) - N(U)] -+ 0 as At, At + 8. 
From the consistency of Nd(U) with N(U), we have I NJ U) - N(U)1 = O(A) + 0 
as A -+ 0. Thus we need only show that I Nd(U) - N&J) / -+ 0 as A + 
But now observe that Nd$U) = Nd( U -I- O(A3)) = N,U + O(A3)? since Su, is 
Lipschitz continuous (away from discontinuities). Thus 1 Nd(U) - Nn(U)i = 
j O(A3)/ -+ 0 as A -+ 0. This proof can be extended to any scheme in which the 
error of the interpolation goes to zero with the mesh spacing. 
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IV. COMPUTING PROCEDURE 

The following gives the computing procedure in a step-by-step form: 

One: Compute and store initial data for the flow. 

Two: Compute and store interpolation coefficients and sin 0 and cos 0 for 
each point of type A in Fig. 1. 

Three: Perform interpolations and transformations. Store resulting data at 
points of type A, B, C, D, E and A’, B’, D’, E’ of Fig. 1. 

Four: Perform standard difference scheme iteration for points on x axis 
except C. 

Five: Obtain necessary output and return to Three. 

If storage space in the computer were crucial while a small amount of machine 
time and programmer effort were not, then steps two, three and four could be 
merged at each point of type a. The distances from the origin to the point of 
type A could be computed efficiently by using a Newton-Raphson iteration with 
a first guess taken as the distance computed at the previous point. Using such a 
conceptually more complex approach would save much of the additional storage 
otherwise used by the Cartesian method. 

V. RESULTS OF NUMERICAL METHODS 

A cylindrical shock problem which was originally solved by Payne [4] was used 
for illustration and comparison. The initial conditions, stated in polar coordinates 
(r, 6) are 

p = 1, p = 4, 

P = 1, for r<l, P = 4, for r>l, 

m = 0, m = 0. 

These conditions give a shock with initial strength 1.93, a contact discontinuity, 
and an expansion fan. The simulation was carried out for the scheme reported 
here and compared to the results of Payne. There were unexplained differences; 
so Payne’s scheme was redone. Although the present graphs, obtained by using 
Payne’s difference equations, are similar in structure to his original graphs, they 
differ mainly in the time t that the shock takes to reach the origin of symmetry. 
These discrepancies occur perhaps because the time step is taken in a different way. 
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In the more recent simulation, dt/Ar seems to be slightly smaller than that which 
Payne reported he took. The effect would be to increase diffusion, and thus 
shock would (and does) reach the center sooner. 

A. Comparison of the Graphs 

We will consider only the differences between the pairs of graphs displayed 
here. The major difference is that the shock reaching the center leads to 
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FIG. 2. Density computed by Payne (Redrawn). 

FIG. 3. 
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Pressure computed by Payne (Redrawn). Pressure computed by Payne (Redrawn). 
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FIG. 4. Density computed by “Cartesian Method” based on Lax differencing. 

FIG. 5. Pressure computed by “Cartesian Method” based on Lax differencing. 
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6. Density by replication of Payne’s method. 

FIG. 7. Pressure by replication of Payne’s method. 
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FIG. 8. Density computed by “Cartesian Method” based on Lax-WendrofF differencing. 

0+ 
0 2 

r 

FIG. 9. Pressure computed by “Cartesian Method” based on Lax-Wendroff differencing. 

nothing spectacular in the Cartesian method. In fact, the shock diverging from 
the center looks very much like the shock converging to it, while by Payne’s 
method, the diverging shock has large-amplitude short-wave oscillations which 
later die out. More spectacular perhaps is the very clear contact discontinuity 
which appears and persists throughout the Cartesian computation and which 
becomes blurred almost immediately in the computation of Payne. In the density 
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graph of the Cartesian computation (Fig. @-for example, at t = .40-there are 
three clearly defined steps. In the corresponding graphs of Payne, (Fig. 2 and 
Fig. 6), the second steps are much less obvious. 

Comparing ‘the pressures curves, the curves at 1 .O, 1.2, 1.4 from the “Cartesian 
method” (Fig. 9) have an additional small maximum to the left of the shock. 
Because the Cartesian method is second-order accurate and Payne’s method is 
first-order so, it is likely that the relative maximum is missed because of the relative 
inaccuracy. 

B. Details of the Computation 

For the Cartesian method the parameters of the computation are dv = .Ol, 
At = .002 and since the problem has been reduced to one in rectangular coordi- 
nates, all the knowledge which is available for such problems can be used. In 
particular, the artificial viscosity reported in [5] can be used to avoid the numerical 
instabilities which otherwise occur, The coefficient of artificial viscosity was taken 
to be 4. 

For the simulation which used Payne’s method, Ar = .Ol and there was no 
appended artificial viscosity term. In an attempt to redo Payne’s computation, 
was taken by estimating the shock speed U by the first-order formula proven in [7]: 

assuming that this term would be the largest near the shock. Then 
const U-l was used. Experiments with constant lead to a value of .4 for 
in this computation. Payne used a different method for finding U and s 
At/Ar = const/U, he used const = .75. Because (2) is an underestimate for U, bot 
computations gave the same average value of At/Ar. 

The foregoing discussion demonstrates the ‘Cartesian method” based on the 
Lax-Wendroff difference scheme. The computation is not quite comparable to 
Payne’s scheme, because it is second-order accurate. In order to have a more direct 
basis for comparison, the Cartesian (two-dimensional) Lax difference scheme 
was also used as a basis for a “Cartesian method” first-order accurate computation. 
The interpolation part was taken to be linear because higher order accuracy 
would have been wasted. The results are illustrated by the unretouched graphs 
of Figs. 4 and 5. The maximum pressure at the origin obtained for this case was 
88 vs 30 for the replication of Payne’s method. The correct value is infinite. 

The computations were done on a finite mesh of points. In order to obtain 
advanced values at the outermost point (Y = 2), linear extrapolation from advanced 
quantities at Y - Ar and r - 2Ar were used at the end of each step. 
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CONCLUSION 

These results clearly demonstrate the power of the “Cartesian method” for 
computing flows with radial symmetry. This method gives very good resolution 
of shocks and contact discontinuities and allows the full machinery of the theory 
of numerical analysis which has been developed for rectangular coordinates to be 
applied to such problems. 
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